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Alerting for imminent earthquakes is particularly challenging due to the high nonlin-
earity and nonstationarity of geodynamical phenomena. In this study, based on spati-
otemporal information (STI) transformation for high-dimensional real-time data, we 
developed a model-free framework, i.e., real-time spatiotemporal information trans-
formation learning (RSIT), for extending the nonlinear and nonstationary time series. 
Specifically, by transforming high-dimensional information of the global navigation 
satellite system into one-dimensional dynamics via the STI strategy, RSIT efficiently 
utilizes two criteria of the transformed one-dimensional dynamics, i.e., unpredicta-
bility and instability. Such two criteria contemporaneously signal a potential critical 
transition of the geodynamical system, thereby providing early-warning signals of pos-
sible upcoming earthquakes. RSIT explores both the spatial and temporal dynamics of 
real-world data on the basis of a solid theoretical background in nonlinear dynamics and 
delay-embedding theory. The effectiveness of RSIT was demonstrated on geodynamical 
data of recent earthquakes from a number of regions across at least 4 y and through 
further comparison with existing methods.

spatiotemporal information transformation learning | earthquake alerting |  
real-time geodynamic data | tipping point | delay-embedding theorem

Earthquakes are natural disasters that originate from the sudden and catastrophic release 
of slowly accumulated strain energy within the Earth’s lithosphere. Many facts indicate 
that the dominant mechanism for the occurrences of catastrophic earthquakes is differential 
movements and interactions of active tectonic blocks (1). One of the largest earthquakes 
on record (with a magnitude of M9.0) struck Northeast Japan on March 11, 2011. This 
event generated a devastating tsunami that inundated the coastal areas of Tohoku, Kanto 
and southern Hokkaido, killing 15,848 people and triggering nuclear meltdowns in 
Fukushima. Such severe disasters have painfully emphasized the urgency and importance 
of alerting for possible catastrophic earthquakes, which is, however, notoriously difficult. 
Since the middle of the last century, the study about precursors of strong earthquakes has 
become an important and challenging task of modern geophysics (2). Some scholars have 
reported observing geological phenomena prior to earthquakes, indicating that the gradual 
accumulations of stress and strain in the Earth’s lithosphere often result in abnormal 
physical and chemical changes in the area surrounding the epicenter (3). These changes 
related to strain buildup and earthquake occurrence are called earthquake precursors (3). 
Retrospective studies of various earthquake precursors have revealed anomalous trends 
before earthquakes (4), such as trends in subsoil radon gas emissions (5), total electron 
contents of the ionosphere (6), the Earth’s electric and magnetic fields (6), deformations 
of the Earth’s surface (7), and groundwater levels (8). Based on these precursory phenom-
ena, many efforts have been devoted to detecting possible signals that may warn of an 
impending earthquake. For instance, some researchers measured the Earth’s electric field 
under the assumption that some electric current may be generated in the seismogenic 
region before the event; however, they discovered that these preseismic signals exist only 
if the correct location (i.e., the area containing the seismic stations sensitive to the event) 
is chosen (9). Despite these observations, however, it remains challenging to alert for 
earthquakes due to the high nonlinearity, nonstationarity and complexity of the underlying 
geodynamics. Actually, from the perspective of nonlinear geophysics, the earth is a huge 
open system where there is the exchange of energy and mass among the blocks composing 
the system. During this process, the system would be unstable when the energy of some 
blocks reaches a certain amount, possibly resulting in the occurrence of earthquakes. 
Generally, the larger the size of an unstable block is, the higher the intensity of the earth-
quake becomes (10).

In particular, taking California as an example, approximately half of the large quakes 
are preceded by weaker foreshocks, but there is only a small probability (about 5%~7%) 
of an earthquake being a foreshock to a larger one (11–13). This inconsistent relation 
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poses a dilemma; should an earthquake-warning system trigger 
an alarm for every large seismic event despite the risk of false 
positives, or compromise by sacrificing accuracy to decrease the 
number of false alarms? To provide warnings for as many severe 
earthquakes as possible while maintaining a low false-positive rate, 
a region-specific tradeoff is necessary.

To address this challenging task, deep learning methods have 
been applied to earthquake alert, and researchers have evaluated 
the performance of neural network techniques in predicting earth-
quakes (14). Data of event times, epicentral latitudes and longi-
tudes, focal depths, and magnitudes were gathered to be converted 
into inputs for neural networks, and the results showed that a 
neural network method can achieve better warning accuracy for 
earthquakes with magnitudes of 3–5 than the methods in previous 
works (14); nevertheless, satisfied results could not be obtained 
for earthquakes with magnitudes of 5–8 due to the lack of suffi-
cient data. Some studies attempted to alert for earthquakes by 
using time series of seismic electric signal data (6, 15). However, 
while most of these neural network methods use various kinds of 
features as inputs to predict the timing and/or magnitude of earth-
quakes, few of them consider the spatial relations such as surface 
deformations of multiple regions (16).

Surface deformations prior to earthquakes have garnered atten-
tion and interest from seismologists. Theoretical and laboratory 
results of rock deformation research before the fracture, especially 
the observation of dilatancy in rocks just prior to their fracture, 
suggest that in many cases, surface deformations could be observed 
(7), implying that some observable surface deformations occur prior 
to an earthquake. In addition, according to the numerous records 
of geophysical anomalies prior to earthquakes, deformation precur-
sors, such as horizontal and vertical deformations of the earth’s sur-
face, occupy the largest proportion in terms of the recording 
frequency (2, 8). However, in the past, it has been time-consuming 
and laborious to observe or detect surface deformations (7). Recently, 
with the emergence of geodetic approaches and their rapid improve-
ment over time, the early warning of earthquakes has entered a new 
phase (17). Fast and cost-effective geodetic technology, such as the 
global navigation satellite system (GNSS), has enabled the move-
ments of the Earth’s surface to be monitored in many locations 
simultaneously in real-time, yielding millimeter-scale observations 
of plate tectonics (18). Using these high-dimensional spatial geo-
detic observations of preseismic movements for (large) earthquakes, 
the risk of a catastrophic earthquake may be estimated more accu-
rately than using either seismological or geological conventional 
approaches (17). Therefore, recent developments in geodetic tech-
niques have provided the motivation to develop an efficient method 
to identify the local deformation precursors and thus alert for poten-
tial strong earthquakes in a timely and robust manner by fully 
exploring high-dimensional spatial geodetic time-series data.

From a dynamical systems viewpoint, we can represent the geo-
dynamics of the Earth as a time-varying, high-dimensional dynam-
ical system in which an earthquake can be viewed as a drastic state 
transition from one stable equilibrium to another caused by the 
gradual change in its time-varying seismic parameters. Thus, from 
the perspective of dynamical systems theory, an earthquake may 
be alerted from high-dimensional spatial geodetic observations, 
either by detecting early-warning signals of the tipping point of 
an earthquake based on the critical slowing down (CSD) effect of 
a state transition condition (19, 20) or by predicting/extending 
the time series of geodynamics for future seismic events based on 
dynamical models or the delay-embedding theorem (21, 22). 
Actually, to detect the early-warning signals of tipping points, the 
CSD concept has been widely applied in climate/ecosystem 
research and biomedical systems (19, 20). Moreover, to predict/

extend nonlinear time series by exploring high-dimensional spatial 
data, the spatiotemporal information (STI) transformation equa-
tions were theoretically derived based on the delay-embedding 
theorem (22) and were validated by data acquired from various 
real-world systems.

In this study, on the basis of the STI strategy with autores-
ervoir computing (23), we proposed a model-free method 
named real-time spatiotemporal information transformation 
learning (RSIT) in order to alert for possible catastrophic seis-
mic events. RSIT combines nonlinear time-series prediction 
with tipping point detection, and has a solid theoretical back-
ground in both the delay-embedding theorem and state transi-
tion theory; thus, based only on high-dimensional time-series 
observations, this method can provide early-warning signals for 
upcoming state transitions by exploiting two critical phenomena 
or criteria of a nonlinear dynamical system approaching a tip-
ping point, i.e., (a) the unpredictability/inconsistency (Fig. 1B) 
and (b) the instability/fluctuations (Fig. 1C). Specifically, by 
fully exploring spatial geodetic data based on the STI strategy, 
we can transform high-dimensional spatial observations into 
one-dimensional temporal time series of either (A) a target/
explicit variable or (B) a latent/implicit variable. By unfolding 
the associated dynamics of the high-dimensional spatial varia-
bles, such a transformation extends the time series, thereby 
allowing the dynamic changes of either (A) the target variable 
representing the earthquake of the target location or (B) the 
latent variable representing the dynamics of the reduced geo-
logical system (one-dimensional center manifold near the tip-
ping point) to be naturally predicted. Then, if the extension/
prediction of the transformed time series for (A), i.e., (a) the 
unpredictability/inconsistency criterion of the STI strategy, 
becomes suddenly inaccurate at some time point, it can be 
considered an early-warning signal of an upcoming state tran-
sition or an earthquake due to the appearance of strongly non-
linear/nonstationary geodynamics near the change point or 
tipping point. Alternatively, if the transformed time series for 
(B), i.e., (b) the instability/fluctuation CSD criterion, starts to 
fluctuate strongly during this period, it implies that an earth-
quake is imminent due to the increased sensitivity to noise near 
the critical state or tipping point. In this way, the proposed 
RSIT method can be directly applied to high-dimensional 
real-time GNSS data or seismic waveform data (Fig. 1D).

From a data-driven analytics perspective, RSIT can efficiently 
transform raw high-dimensional spatial data into one-dimensional 
temporal data, naturally producing either the time-series exten-
sion/prediction of one target variable or the transformed time series 
of one latent variable on the basis of the STI equations combined 
with autoreservoir computing (Fig. 1 A–C). Through this data 
reconstruction procedure, a series of future GNSS values for each 
target variable and the latent variable can be forecasted in a 
multistep-ahead way, and two criteria/indices can be estimated 
based on the STI equations and CSD theory: (a) the unpredicta-
bility detection index for measuring the difference or inconsistency 
between the predicted/extended and real values of (A) a target 
variable (Fig. 1B) and (b) the fluctuation detection index for quan-
tifying the fluctuations of (B) the one-dimensional latent variable 
(Fig. 1C). Simultaneous changes in these two RSIT indices serve 
to identify an early-warning signal of a tipping point just before 
an imminent earthquake in a geodynamic system.

RSIT has significant advantages in three aspects: i) It can detect 
early-warning signals of high-magnitude earthquakes with higher 
accuracy than the existing methods by combining time-series pre-
diction with critical state detection; ii) it requires much less com-
putational time and fewer computational resources than traditional D
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Fig. 1. Schematic illustration of RSIT. (A) The given high-dimensional “spatial” information zt and one-dimensional “temporal” information vt formed by the delay-
embedding theorem can be transformed into each other based on the STI equations, where F  represents an autoreservoir neural network whose weights are 
randomly given and fixed. Matrices P and Q are weight matrices to be determined by solving the STI equations. According to the information flow, RSIT has an 
autoencoder-like framework, that is, F

(

z
t

)

→ v
t
→ F

(

z
t

)

, different from but similar to the autoencoder structure zt → v
t
→ z

t . There are two ways to transform 
high-dimensional spatial information into one-dimensional temporal dynamics corresponding to two critical signals. (B) v is set as v = z

s
(s = 1, 2, ⋯ ,n ) ; that 

is, v is an explicit target variable selected from the high-dimensional variables as the target location or factor of the earthquake. Then, on the basis of the STI 
equations, the known/past spatial data are transformed into the unknown/future temporal information of the target variable z

s
 . Any significant inconsistency 

between the predicted transformed values and observed values of z
s
 implies unpredictability and thus implies the appearance of an early-warning signal of a 

tipping point/earthquake. (C) v is set as the latent variable, whose values are also transformed from the same known data by the STI equations. Here, v is the 
reduced one-dimensional system approximating the dominant dynamics or the center manifold of the geodynamical system near the tipping point. A drastic 
increase in the fluctuation of v signals an imminent critical transition/earthquake. (D) RSIT detects both the unpredictability signal (US) at t

US
 and the fluctuation 

signal (FS) at t
FS

 from GNSS time-series observations or seismic waveform data by the STI strategy with autoreservoir computing, which has the potential to 
provide early-warning signals of upcoming earthquakes from the above two signals.
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neural network methods due to the nature of autoreservoir com-
puting, in which all weights are randomly given in advance with-
out training; and iii) it can be applied to real-time earthquake alert 
for a given region once the parameters are established. In appli-
cations involving GNSS or seismic waveform time-series data from 
various regions, namely, Sichuan Province of China, west-central 
Hokkaido of Japan, Ibaraki Prefecture of Japan, Miyagi Prefecture 
of Japan, and south-central Alaska of the United States, RSIT 
successfully alerted for most of strong earthquakes ( M ≥ 5 ) and 
achieved 98.41% accuracy, 82.97% true-positive rate (TPR), and 
0.98% false-positive rate (FPR) during recent years. These appli-
cations in different regions demonstrate the possible effectiveness 
and robustness of RSIT, which also suggests its potential for prac-
tical applications in the real-time early warning of earthquakes 
with high magnitudes. Based on the RSIT method, we also devel-
oped a web tool (publicly accessible at https://earthquakepredic-
tionrsit.com/eq_perdict) to find the abnormal local deformation 
precursors based on high-dimensional data, thus facilitating the 
detection of any potential early-warning signals of strong earth-
quakes in several regions.

Results

With a sliding time window scheme, RSIT was applied to high-
dimensional time series from both a numerical simulation 
(SI Appendix, Fig. S1 and Note S1) and GNSS observations or 
seismic waveforms in five high-risk earthquake zones/regions, 
namely, Sichuan Province of China, Ibaraki Prefecture of Japan, 
west-central Hokkaido (around Iburi) of Japan, Miyagi Prefecture 
of Japan, and south-central Alaska of the United States (Table 1). 
The input data for this study consisted of preprocessed GNSS and 
waveform time series. Missing values were filled using either cubic 
spline interpolation or a moving median strategy. Dense GNSS 
and waveform data were smoothed using average aggregation with 
a granularity of 24 h or 5 min, respectively (see SI Appendix, Note 
S2 for details). The setting of sliding windows for the observed 
time series and the specific parameter setting for each region are 
described in SI Appendix, Note S3 and Table S1. The details of 
each region are provided in SI Appendix, Note S4. The metrics 
employed to evaluate the earthquake warning performance are 
described in SI Appendix, Note S5. According to the results, RSIT 
alerted for upcoming earthquakes with 93.21% accuracy and 
99.00% specificity on average for 1,380 earthquakes with 

3 ≤M < 5 , and 98.41% accuracy and 99.02% specificity on aver-
age for 417 strong earthquakes with M ≥ 5 . In addition, RSIT 
identified early-warning signals 6.27 d on average prior to the 
earthquakes with M ≥ 5 based on the daily GNSS data and 5.75 
h on average prior to the earthquakes based on 5-min-long seismic 
waveform records. The alerting results of RSIT for the full time 
period of testing in each region are provided in SI Appendix, 
Figs. S2–S6. More computational details are provided in 
SI Appendix, Tables S1–S5. Besides, compared with the 10 existing 
methods M1–M10 (Materials and Methods), RSIT achieved the 
best accuracy and specificity in all regions, and produced far lower 
FPR (Table 2 and SI Appendix, Tables S6–S10).

Earthquake Alerting in Japan. Next, RSIT was used to alert for 
earthquakes in Japan. As a result of the active subduction and 
convergence among four lithospheric plates (the Pacific plate, North 
American plate, Eurasian plate and Philippine Sea plate) in the 
vicinity of the islands of Japan, almost one-tenth of the earthquakes 
on Earth occur in or around this region (24). Among these events, 
the crustal intraplate earthquakes have generally shallow focal depths 
with epicenters near the densely populated areas of Japan and 
therefore could lead to catastrophic casualties and damage. RSIT was 
applied to the high-dimensional GNSS time-series observations from 
several regions in Japan (Fig. 2), i.e., Ibaraki, west-central Hokkaido 
(around Iburi), and Miyagi. There are approximately 1,300 GNSS-
receiver stations in Japan, from which we collected high-dimensional 
(1300D) GNSS time series of the daily elevation displacement (the 
change in elevation). In Japan, earthquake impact is also assessed 
by the Japan Meteorological Agency (JMA) seismic intensity scale, 
which describes the severity of shaking in specific locations during 
an earthquake, ranging from intensity 0 to intensity 7 (25). In this 
study, JMA intensity ( IJMA)= 2 , being felt by people keeping quiet 
in buildings (25), is set as the intensity cutoff to alert for earthquakes 
in Japan.

Earthquake Alerting in Ibaraki Prefecture, Japan. Ibaraki 
Prefecture in Japan lies in an area of complex tectonics near the 
intersection of four tectonic plates: the Pacific plate, the Okhotsk 
plate (a fragment of the North American plate), the Amur plate, and 
the Philippine Sea plate (26). Brisk seismic activities successively 
occur once every few years in southwest Ibaraki Prefecture, where 
the hypocenters of events tend to occur at a greater depth of 
approximately 50 km, and earthquakes tend to be of magnitude 

Table 1. Performance statistics of RSIT in various regions

Indices
Region

Monitoring
years

Number 
of sliding 
windows*

Earthquake 
magnitude 

( M)
Number of 

earthquakes TPR FPR Specificity Accuracy
Average 

days ahead

All regions 10,962 M ≥ 5.0 417 0.83 0.0098 0.9902 0.9841 6.27
3.0 ≤ M < 5.0 1,380 0.53 0.0100 0.9900 0.9321 6.08

Ibaraki 7 2,557 M ≥ 5.0 133 0.82 0.0107 0.9893 0.9804 6.26
3.0 ≤ M < 5.0 387 0.64 0.0065 0.9935 0.9402 6.13

West-central 
Hokkaido

6 2,192 M ≥ 5.0 52 0.81 0.0126 0.9874 0.9831 6.69
3.0 ≤ M < 5.0 100 0.45 0.0201 0.9799 0.9557 6.16

Miyagi 4 1,465 M ≥ 5.0 157 0.85 0.0084 0.9916 0.9761 6.02
3.0 ≤ M < 5.0 200 0.60 0.0126 0.9874 0.9338 5.02

Sichuan 5 1,826 M ≥ 5.0 14 0.93 0.0039 0.9961 0.9956 7.31
3.0 ≤ M < 5.0 322 0.34 0.0033 0.9967 0.8817 6.56

South-central 
Alaska

8 2,922 M ≥ 5.0 61 0.80 0.0112 0.9888 0.9849 6.33
3.0 ≤ M < 5.0 371 0.56 0.0074 0.9926 0.9381 6.35

*The setting of sliding-window scheme of the observed time series is presented in SI Appendix, Note S3.D
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M5.0–M6.0 (27). Twenty-two GNSS stations are distributed 
across Ibaraki (Fig. 2A). The epicenters of a series of earthquakes 
that occurred around Ibaraki Prefecture are shown in Fig.  2B. 
RSIT was applied to the 22-dimensional time series (Fig. 2C), with 
the parameter setting shown in SI Appendix, Table S1. Among all 
133 strong earthquakes with M ≥ 5 and IJMA ≥ 2 that occurred 
in Ibaraki during a period of 7 y from January 1, 2015 to January 
1, 2022, RSIT successfully alerted for most of them with 6.26 d 
ahead on average, achieving 98.04% accuracy, 98.93% specificity, 
0.82 TPR and only 0.0107 FPR (Table 1).

Earthquake Alerting in West-Central Hokkaido, Japan. The island 
of Hokkaido is located to the north of the main island of Honshu 
and exhibits mountainous and volcanic plateau landforms. It is one 
of the most tectonically active regions in Japan and is influenced 
by both the westward subduction of the Pacific plate and the 
convergence between the North American and Eurasian plates 
(28). Hence, like many areas of Japan, Hokkaido is seismically 
active. Since 1980, the island has been struck by a series of massive 
( M ≥ 6 ) earthquakes, such as the earthquakes that occurred in 
1993, 2003 and 2018 (with magnitudes of M7.6, M8.3, and M6.6, 
respectively). There are 35 GNSS stations in west-central Hokkaido 
(around Iburi), and their distribution is shown in Fig. 2D.

During a period of 6 y from January 1, 2016 to January 1, 
2022, 52 strong earthquakes with M ≥ 5 and IJMA ≥ 2 occurred 
across west-central Hokkaido. Based on the 35-dimensional 
GNSS time-series observations obtained during these years, RSIT 
yielded early-warning signals for these earthquakes with 6.69 d 
ahead on average, achieving 98.31% earthquake-warning accu-
racy, 98.74% specificity, 0.81 TPR and 0.0126 FPR (Table 1). 
The graphic display of how RSIT works is shown in Fig. 2 F and 
G. More performance details are provided in Table 1 and 
SI Appendix, Table S2.

Earthquake Alerting in Miyagi Prefecture. Miyagi Prefecture 
is located in the Tohoku region of Honshu which lies at the 
intersection among three tectonic plates: the Eurasian, Philippine, 
and North American plates (29). Severe earthquakes strike this 
region almost cyclically (approximately every 40 y); examples 
include large earthquakes that occurred in 1793, 1835, 1861, 
1897, 1936, and 1978. There are 23 GNSS stations in Miyagi, 

and their geographical distributions are presented in Fig. 2E. RSIT 
was applied to the 23-dimensional GNSS time-series observations 
from this region (Fig. 2 H and I).

For the early warning of the strong earthquakes ( M ≥ 5 ) that 
struck the Miyagi region from January 1, 2008 to January 1, 2012, 
RSIT achieved 97.61% accuracy and 99.16% specificity and pro-
vided early-warning signals 6.02 d prior to the earthquakes on 
average (Table 1). In addition, RSIT alerted for most 200 
( 3 ≤M < 5 ) earthquakes effectively, reaching 93.38% accuracy 
and 98.74% specificity. More details of the earthquake-alerting 
performance are provided in Table 1 and SI Appendix, Table S2.

Earthquake Alerting in Sichuan, China. Sichuan is a landlocked 
province occupying most of the so-called Sichuan Basin in 
Southwest China, which is located within the Eurasian plate 
near its boundary with the Indian plate. The Sichuan Basin has 
historically shown low levels of seismic activity, but over the past 
few decades, especially since 2015, earthquake activity therein 
has experienced an unprecedented trend of continuous growth, 
and the magnitude of events has been increasing; for example, 
the magnitude 5.7 Xingwen earthquake and the magnitude 6.0 
Changning earthquake occurred in 2018 and 2019, respectively 
(30). There are two types of time-series data in the Sichuan Basin, 
i.e., 1) daily records of vertical displacements derived from 24 
GNSS stations (distributed as shown in Fig. 3A) and 2) 5-min-
long seismic waveform records (31) derived from 37 seismic 
stations (distributed as shown in Fig. 3B).

From January 1, 2017 to January 1, 2022, fourteen strong earth-
quakes with M ≥ 5  occurred in Sichuan, the majority of which 
were alerted by RSIT 7.31 d prior to the event, reaching 99.56% 
accuracy, 99.61% specificity, 0.93 TPR and 0.0039 FPR (Table 1). 
In Fig. 3, we illustrate how RSIT alerts for several major earth-
quakes in Jiuzhaigou and Changning. Based on the daily GNSS 
time series, the early-warning signal provided by RSIT is 4/2 d 
prior to the earthquake that occurred in Jiuzhaigou/Changning 
(Fig. 3 C and D and SI Appendix, Table S2). Based on the 
5-min-long waveform records, the early-warning signal provided 
by RSIT is 2.92/8.58 h prior to the earthquake that occurred in 
Jiuzhaigou/Changning (Fig. 3 E and F and SI Appendix, Table S3). 
More details of the earthquake-alerting performance are provided 
in Table 1 and SI Appendix, Tables S2-S3.

Table 2. Comparison of the earthquake-alerting performance of RSIT in five regions with that of the ten other 
existing methods
Methods
Region Metrics RSIT M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Ibaraki TPR 0.82 0.49 0.62 0.16 0.58 0.74 0.45 0.55 0.69 0.27 0.68
Aggregative

score
0.87 0.62 0.69 0.49 0.65 0.71 0.62 0.61 0.72 0.58 0.70

West-central Hokkaido TPR 0.81 0.56 0.63 0.40 0.44 0.54 0.39 0.67 0.68 0.33 0.58
Aggregative

score
0.80 0.61 0.65 0.53 0.56 0.60 0.51 0.62 0.68 0.58 0.63

Miyagi TPR 0.85 0.72 0.62 0.55 0.48 0.66 0.68 0.74 0.64 0.64 0.63
Aggregative

score
0.92 0.81 0.77 0.65 0.65 0.78 0.78 0.83 0.77 0.73 0.75

Sichuan TPR 0.93 0.21 0.29 0.36 0.50 0.36 0.50 0.57 0.64 0.21 0.57
Aggregative

score
0.86 0.43 0.49 0.45 0.52 0.50 0.56 0.55 0.59 0.43 0.55

South-central Alaska TPR 0.80 0.54 0.59 0.49 0.31 0.51 0.62 0.59 0.61 0.43 0.59
Aggregative

score
0.80 0.58 0.63 0.52 0.46 0.59 0.63 0.61 0.65 0.63 0.59

*Aggregative score is the average of TPR, precision and accuracy. The performance on other statistic indices can be seen in SI Appendix, Tables S6–S10. The largest values were marked by 
bold typeface.
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Earthquake Alerting in South-Central Alaska, United States. 
South-central Alaska, located at the northern junction between the 
North American plate and the Pacific plate along the Circum-Pacific 
Ring of Fire, is one of the most geologically active regions of the world 
(32). Based on the GNSS time-series observations (the sampling 
frequency of the data is 1/86,400 Hz, i.e., daily GNSS data) in 
south-central Alaska, RSIT was applied to detect the warning signals 
for earthquakes from January 1, 2014 to January 1, 2022. During 
the 8 y, there are 61 strong earthquakes with M ≥ 5 occurred in 
south-central Alaska. RSIT succeeded in alerting for the majority of 
earthquake events with an average of 6.33 d ahead, reaching 98.49% 
accuracy, 98.88% specificity, 0.80 TPR and 0.0112 FPR (Table 1). 
More details are provided in SI Appendix, Table S2.

As shown in Fig. 4, the two major earthquakes that struck 
south-central Alaska in November 2018 were alerted based on the 
GNSS data of the frequency of 1/300 Hz, i.e., one value every 5 
min. The early-warning signals were provided by RSIT at 4:31 AM 
November 20, 2018 and 1:54 AM November 30, 2018, respec-
tively, prior to the seismic events, and there were no FPs, achieving 
100% accuracy and 100% specificity (SI Appendix, Table S3).

More applications of RSIT to earthquake datasets, including 
the GNSS time-series data from south-central Alaska in the United 
States (with different sampling intervals or frequencies from those 
stated in the main text), Fukushima Prefecture and Kumamoto 
Prefecture of Japan, are provided in SI Appendix, Fig. S7. Details 
of the applications are described in SI Appendix, Notes S6–S8.
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Fig. 2. Possible early-warning signals of earthquakes with 
M ≥ 5.0 provided by RSIT based on the high-dimensional 
GNSS time series from three regions in Japan. (A) The 
geographic distribution of 22 GNSS stations in Ibaraki. 
(B) The geographic distribution of the epicenters of 38 
earthquakes with M ≥ 5.0 around Ibaraki, from January 1, 
2015 to January 1, 2017. (C) Alerted earthquakes around 
Ibaraki. Totally 35 earthquakes (blue bars) were signaled 
(red stars) in advance by RSIT, and only five false signals 
(gray stars) occurred during these 2 y. (D) The geographic 
distribution of 35 GNSS stations in west-central Hokkaido. 
(E) The geographic distribution of 23 GNSS stations in 
Miyagi. (F) The geographic distribution of the epicenters 
of earthquakes with M ≥ 5.0 around west-central 
Hokkaido, from January 1, 2017 to October 10, 2018.  
(G) The earthquake-alerting performance of RSIT around 
west-central Hokkaido. (H) The geographic distribution 
of the epicenters of earthquakes with M ≥ 5.0 around 
Miyagi, from January 1, 2010 to January 1, 2011. (I) The 
earthquake-alerting performance of RSIT around Miyagi. 
(A, D, E) Copyright Geospatial Information Authority of 
Japan. (B, F, H) Copyright Japan Meteorological Agency.
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Factors That Affect the Earthquake-Alerting Performance. 
Seismic events are categorized into different types on the basis of 
the magnitudes of earthquakes based on United States Geological 
Survey (USGS): micro ~ light (M1.0–M4.9), and moderate ~ great 
(M5.0–above). Minor quakes with magnitude below M4.9 occur 
frequently worldwide, and generally cause little damage. Stronger 
quakes with magnitude larger than M5.0 may cause catastrophic 
damages. It is difficult to alert for all earthquakes, since most of 

shocks are micro ~ light. Therefore, the proposed RSIT is designed 
to alert for moderate ~ great (M5.0–above) earthquakes. On the other 
hand, in some countries like Japan, the JMA intensity scale is also 
employed to describe the severity of damages from the event on a scale 
from IJMA = 0  to IJMA = 7  , with IJMA = 0  being imperceptible to 
people and IJMA = 7  being severe damage to many residences (25). 
Generally, high-intensity earthquakes (i.e., stations are near epicenters) 
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are with shallow focal depths, or with large magnitudes, or with both 
features (33, 34). Thus, intensity is an effective scale for measuring 
the destruction of earthquakes. In this study, IJMA = 2 , which is 
felt by people keeping quiet in buildings (25), is set as the intensity 
cutoff to alert for earthquakes in Japan so that any earthquake that 
has a nonnegligible impact on the studied region can be considered 
(SI Appendix, Fig. S8). In a word, in order to alert for destructive 
earthquakes as accurately as possible and minimize false-positive 
signals, the proposed RSIT is designed to detect early-warning signals 
for possible earthquakes with high magnitudes (M5.0–above) and 
high intensities (Intensity 2–above).

As presented in Tables 1 and 3, it is seen that the RSIT can alert 
for most moderate ~ great earthquakes with much better perfor-
mance. Furthermore, we have also showed the detailed perfor-
mance of RSIT on alerting for earthquakes with magnitudes 
M ≥ k  , k = 3, 4, 5, 6  for each region as presented in SI Appendix, 
Table S5 and Note S9, from which it is seen that M ≥ 5 is the 
best magnitude cutoff for applying RSIT.

Focal depth is another factor that affects the destruction level of 
an earthquake. Most earthquakes occur at depths less than 70 km, 
and generally, shallower earthquakes are more destructive (35). To 
better analyze the earthquake-alerting performance, we evaluated the 
performance on three groups of earthquake events, i.e., i) very shallow 
earthquakes with focal depths less than or equal to 30 km, ii) other 
shallow earthquakes with focal depths between 30 km and 70 km, 
and iii) deeper earthquakes with focal depths more than or equal to 
70 km. Generally, RSIT works better in alerting for earthquakes with 
shallow focal depths. However, it still detects the early-warning signals 
for most high-magnitude earthquakes even with deep focal depths 
(Table 3). Overall, compared with the magnitude, the impact of the 
earthquake depth is relatively small for RSIT.

The epicenter positions of earthquake events in some coastal 
regions were divided into two categories, i.e., “on-land” and “off-
shore” earthquakes. As shown in Table 3 and SI Appendix, Fig. S9 
and Table S4, RSIT generally works better in alerting for on-land 

strong earthquakes. Moreover, as a type of earthquake precursors, 
the surface deformation can be found far away from the epicenter, 
that is, there could be distant surface deformation preceding a 
high-magnitude earthquake, according to the various empirical 
formulas estimating the radius of the effective precursor manifes-
tation zone (36). Therefore, the abnormal change/signal of the 
surface deformation captured by a few GNSS monitoring stations 
may be related to an imminent strong earthquake several hundred 
kilometers away. In theory, the proposed method may alert for a 
long-range earthquake with high magnitude by detecting abnormal 
surface deformation based on real-time observation from many 
GNSS monitoring stations. However, the practical application 
shows the limitation that RSIT generally performs better in alerting 
for earthquakes at close ranges than for those at long ranges 
(SI Appendix, Note S9 and SI Appendix, Fig. S8 and Table S11).

In summary, the above computations show that 1) RSIT is 
effective and accurate in alerting for those earthquakes with mag-
nitude M ≥ 5 ; 2) RSIT can provide valid early-warning signals 
for M ≥ 5 earthquakes with shallow or deep focus. 3) Generally, 
RIST works better in alerting for on-land earthquakes ( M ≥ 5 ). 
4) In general, RIST demonstrates better performance to alert for 
earthquakes with epicenters in proximity to GNSS stations.

Discussion

Earthquakes have been taking countless human lives and destroying 
vast swathes of property. Accordingly, methods for accurately and 
robustly detecting earthquake precursors and generating early-
warning signals are urgently needed, although such a target is noto-
riously difficult and challenging. The rapid development of geodetic 
technology, however, has created an opportunity to observe the 
Earth’s surface simultaneously in real-time with GNSS platforms 
from a number of positions. On the basis of this technology, we 
developed RSIT to detect the local deformation precursors, which 
may serve as the prelude of strong earthquakes. We realize that in 
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addition to earthquakes, there are many other causes of local surface 
deformation (37, 38), such as landslides, engineering blasting, and 
volcanic eruptions (39), which may bring false-positive signals in 
earthquake alert (SI Appendix, Note S10). But this is still a valuable 
reference for the seismic geohazard monitoring and warning.

Generally, due to the high nonlinearity and nonstationarity of 
geodynamic phenomena, it is difficult to detect the tipping points or 
state transition points in many real-world systems, especially geody-
namical systems (40), based on GNSS observations. By focusing on 
two key features, i.e., the unpredictability and instability of the 
high-dimensional time-series data near the tipping point of a non-
linear dynamical system, we developed the RSIT strategy based on 
the STI equations, which could robustly and accurately provide 
early-warning signals of the critical change in high-dimensional 
GNSS and seismic waveform values. Specifically, RSIT first trans-
forms high-dimensional spatial information into one-dimensional 
temporal dynamics for each target variable and a single latent variable 
based on the STI equations. Then, the two extended one-dimensional 
time series are used for nonlinear time-series prediction (the unpre-
dictability criterion with the delay-embedding theorem) and tipping 
point detection (the instability criterion with the CSD theorem), 
which are conducted simultaneously to robustly detect precursors 
and early-warning signals of earthquakes. Considering that the pre-
seismic movement in imminent earthquakes is one of the main causes 
of abnormal and significant changes in geodetic values, an upcoming 
earthquake may thus be robustly alerted. Furthermore, from a 
dynamical systems viewpoint, short-term geodetic time-series data 
recorded in the recent past should contain much more information 
on the near-future evolution of a geodynamical/seismic system than 
time-series data recorded in the distant past owing to the time-varying, 
nonstationary nature of natural phenomena. RSIT can transform 
recently recorded short-term high-dimensional data into future time 
series by exploiting high-dimensional spatial information to compen-
sate for short-term data, thus making robust earthquake warnings.

On the basis of high-dimensional GNSS time-series observations 
and seismic waveform data from a number of regions across recent 
4 to 8 y, RSIT detected the early-warning signals of strong earth-
quakes with high accuracy and low FPRs, and performed better 
than ten existing methods, thereby demonstrating the effectiveness 
of the proposed method. In addition, compared with traditional 
deep learning methods, RSIT relies on an autoreservoir neural 
network, which does not require the training of a massive number 
of parameters and thus takes much less computational time and 

resources; hence, RSIT is suitable as a complementary and syner-
getic method of the widely used short-term seismicity-based mod-
els, such as the Epidemic Type Aftershock Sequence (ETAS) model 
(41, 42) and the STEP model (43), which can forecast earthquakes 
in a statistical way based on the information of historical earth-
quakes. We will further explore the possibility of improving the 
RSIT method based on the seismic catalogs and ensemble modeling 
technique of the Collaboratory for the Study of Earthquake 
Predictability (CSEP) (44) in two aspects. First, for each specific 
earthquake prone area, instead of using the empirical parameters, 
it may be promising to train the parameters of RSIT for elaborate 
event classifications such as different geological conditions, earth-
quake magnitudes, epicenter locations, and other classifications 
according to historic seismic catalogs. Second, we will develop an 
ensemble method which employs both the GNSS-based RSIT 
method and the seismicity-based forecasting models as simultane-
ous weak learners, and make a decision of the final earthquake alert 
by combining their signals, e.g., by voting.

The real-data applications presented herein show that RSIT per-
forms better at detecting the possible early-warning signals of mod-
erate ~ great earthquakes with magnitudes M5.0 or above and with 
terrestrial epicenters or shallow focal depths (Table 3), which implies 
that those strong earthquakes may occur with different geodynamical 
mechanisms from other earthquakes (1, 40). Although it has been 
shown that the alerting accuracy of RSIT outperforms those of pre-
vious methods, it is an important future task to further improve RSIT 
toward practical use. Clearly, how to accurately detect early-warning 
signals of low-magnitude (or low-intensity) earthquakes and events 
with deep focal depths or epicenters under the sea is still challenging 
for RSIT and should be further studied and solved in the future.

Materials and Methods

Spatiotemporal Information (STI) Transformation. High-dimensional spatial 
variables of geodetic observations from a geodynamical system contain abundant 
information on its future evolution, which can be exploited for the robust analysis 
and warning of seismicity. The STI strategy, which is theoretically based on the 
delay-embedding theorem (21, 44), is derived to transform the spatial informa-
tion of multi-variables into the temporal dynamics of a target variable. We use the 
following notations: z t = (zt

1
, zt

2
, ⋯ , zt

n
)� is an n-dimensional vector of observed 

values from n geodetic observation stations at time point t  , where the symbol “′”  
represents a transpose, and (z1, z2, ⋯ , zm)  is a matrix of the observed high-
dimensional time series with m time points in a sliding time window w1 (Fig. 1A). 
The calculation in other time widows is similar.

Table 3. Earthquake-alerting performance of RSIT in each region

Region

Classification
of events
Magnitude

TPR FPR

On 
land Offshore

Depth ≤ 
30 km

30 < 
Depth 
≤ 70 km

Depth > 
70 km

On 
land Offshore

Depth ≤ 
30 km

30 < 
Depth ≤ 
70 km

Depth > 
70 km

Ibaraki
(January 1, 2015–

January 1, 2022)

M ≥ 5.0 0.91 0.79 0.87 0.80 0.88 0.0103 0.0106 0.0103 0.0106 0.0102
3.0 ≤ M < 5.0 0.62 0.66 0.69 0.61 0.69 0.0059 0.0059 0.0057 0.0061 0.0055

West-central Hokkaido
(January 1, 2016–

January 1, 2022)

M ≥ 5.0 0.77 0.82 1.00 0.77 0.73 0.0124 0.0125 0.0124 0.0125 0.0124
3.0 ≤ M < 5.0 0.51 0.34 0.55 0.45 0.31 0.0197 0.0195 0.0193 0.0197 0.0193

Miyagi
(January 1, 2008–

January 1, 2012)

M ≥ 5.0 0.92 0.83 0.81 0.90 0.69 0.0076 0.0083 0.0078 0.0080 0.0076
3.0 ≤ M < 5.0 0.60 0.60 0.53 0.61 0.75 0.0115 0.0120 0.0115 0.0118 0.0111

South-central Alaska 
(January 1, 2014–
January 1, 2022)

M ≥ 5.0 0.81 0.79 0.86 0.68 0.86 0.0111 0.0111 0.0110 0.0110 0.0110
3.0 ≤ M < 5.0 0.52 0.60 0.59 0.58 0.50 0.0069 0.0070 0.0069 0.0067 0.0067

Sichuan (January 1, 
2017–January 1, 2022)

M ≥ 5.0 0.93 NaN* 0.93 NaN* NaN* 0.0039 NaN* 0.0039 0.0038 0.0038
3.0 ≤ M < 5.0 0.34 NaN* 0.34 NaN* NaN* 0.0033 NaN* 0.0033 0.0027 0.0027

*NaN means there is no such event.
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First, from the delay-embedding theorem, we define an L-step delay-
embedding transform of a scalar variable v , such that for a time series (vector) 
v
t = (vt , vt+1, ⋯ , vt+L−1)� with m time points,

	

[1]

Here, the parameter L > 1 is also known as the embedding dimension. Then, for 
a set of high-dimensional time-series observations

	 [2]

with n variables and m time points, there are the following STI equations (22, 23):

	 [3]

where Φ:ℝn
→ ℝ

L and Ψ:ℝL
→ ℝ

n are nonlinear differentiable functions sat-
isfying Φ◦Ψ = id , the symbol “◦” is the function composition operation, and 
id represents the identity function. In Eq. 3, the first equation is the primary STI 
equation, and the second is its conjugate form. Actually, Eq. 1 is a Hankel matrix 
that is constructed by a one-dimensional time series of v . According to Takens’ 
embedding theorem and its generalized versions, a delay-embedding scheme v t 
can be used to reconstruct the topologically equivalent dynamics of the original 
system zt if L > 2d > 0 under generic conditions (21), where d is the box-counting 
dimension of the original attractor and is usually small due to dissipation in real-
world systems (44). The first equation of Eq. 3 clearly maps z t to v t , which actually 
transforms multivariable spatial information (zt1, z

t

2
, ⋯ , zt

n
)’ at one time point/

instant t  into the univariable temporal information 
(

v
t , vt+1, ⋯ , vt+L−1

)’

 over 
multiple time points {t, t + 1, ⋯ , t + L − 1} . Therefore, the dynamics of the  
n-dimensional system can be represented by one-dimensional data with the 
delay-embedding theorem. The details of Takens’ embedding theorem are pro-
vided in SI Appendix, Note S11.

Second, due to the high nonlinearity and time-varying nonstationarity of the 
underlying geodynamics (45), the most recent short-term time series usually 
contain more reliable information on the dynamics of the immediate future than 
the distant-past time series. Thus, the problems posed by nonstationarity and 
nonlinearity can be alleviated by using high-dimensional short-term data (i.e., in 
a sliding time window), provided that this high-dimensional spatial information 
can be transformed into one-dimensional temporal information to compensate 
for the short-term data by the STI equations. However, it is difficult to estimate 
the nonlinear maps Φ and Ψ with only short-term time series. By taking a non-
linear function F as an autoreservoir structure based on both the primary and 
the conjugate forms of the STI equations, we approximate the STI equations of 
Eq. 3 into simpler forms:

	 [4]

where PQ = I , P is an L × ñ matrix, Q is an ñ × L matrix, I  represents an L × L 
identity matrix, and F =

(

F1, F2, ⋯ , F
ñ

)�
  is a nonlinear function (autoreservoir), 

with Fk :ℝ
n
→ ℝ . The autoreservoir F is actually a multilayer neural network 

with interconnected nodes, among which the weights are randomly given and 
fixed in advance (rather than trained) in the computation (44, 46). Thus, Eq. 4 
can be efficiently solved in contrast to the original Eq. 3. A detailed description 

of the autoreservoir and STI equations [4] are provided in SI Appendix, Note S11. 
Based on the explicit target variable or the implicit latent variable v , there are two 
different forms of the STI equations:

1. � Predicting an explicit/target variable: v is set as a target variable  v = z
s
(s = 1, 2, ⋯ , n) , 

and v t =
(

v
t , vt+1, ⋯ , vt+L−1

)�
=
(

z
t

s
, zt+1

s
, ⋯ , zt+L−1

s

)�
= z

t

s
  is a vector 

of time series with t = 1, 2, ⋯ ,m . Thus, 
(

v
1, v2, ⋯ , vm

)′ are observable 

values of v , while 
(

v
m+1, vm+2, ⋯ , vm+L−1

)� are future/unknown values. 

Then, by solving the STI equations of Eq. 4, we can obtain the L − 1 future values 
(

v
m+1, vm+2, ⋯ , vm+L−1

)�
 = 

(

z
m+1
s

, zm+2
s

, ⋯ , zm+L−1
s

)�

 beyond the current 
time point m , which are transformed from the high-dimensional spatial information 
z
t , t = 1, 2, ⋯ ,m . Far from the tipping point, since the geodynamical system is 

stable, the predicted/extended values are considered accurate and expected to be 
close to the observed values within each sliding time window of the time series. 
However, when the geodynamic system approaches the tipping point or transition 
point, the nonlinear terms dominate the geodynamics; consequently, the predicted/
extended values become inconsistent with the observed values. In this situation, the 
so-called unpredictability/inconsistency signal can be identified by solving the target 
variable-based STI equations (TV-STI Eq. 4) when v is a target variable.

2. � Predicting the implicit/latent variable: v is set as a latent variable, where both 
(

v
1, v2, ⋯ , vm

)′
 and 

(

v
m+1, vm+2, ⋯ , vm+L−1

)�

 are unknown values of v . 
We can obtain these m + L − 1 values by solving Eq. 4. The STI equations 
transform/reduce high-dimensional spatial information zt to the dynamics of 
the latent variable v , which approximately represents the dominant dynamics 
of the original system. When the geodynamical system is in a stable equilib-
rium far from the tipping point, there is no CSD phenomenon occurring in 
such one-dimensional dynamics {v1, v2, ⋯ , vm+L−1}. However, when the 
geodynamical system approaches the tipping point, strong fluctuations of 
the one-dimensional center manifold dynamics of {v1, v2, ⋯ , vm+L−1} arise 
based on the CSD principle or dynamical network marker conditions (19) due 
to the increased sensitivity to noise. In other words, the so-called fluctuation/
instability signal can be identified by solving the latent variable–based STI 
equations (LV-STI Eq. 4) when v is the latent variable.
Therefore, for a time point or certain period, RSIT can detect the significant 

change of geodetic values (e.g., GNSS and seismic waveform values) based on 
both of the above criteria, that is, by detecting the unpredictability signal from 
the TV-STI equations at the same time as the fluctuation signal from the LV-STI 
equations. The details of the two criteria are given in the following sections.

Detecting the Unpredictability/Inconsistency Signal Based on STI Equations 
of Each Target vt. The first early-warning signal from RSIT is the unpredictability or 
inconsistency signal, the appearance of which indicates that the geodynamical system 
has become “unpredictable” via the STI equations due to approaching a catastrophic 
transition or an earthquake.

As shown above, the criterion of the unpredictability signal detection is based on 
the TV-STI equations; that is, the value of each geodetic variable at the target station 
is chosen as one target variable for prediction. By setting vt = z

t

s
(s = 1, 2, ⋯ , n) , 

there are observed/known values 
{

v
1, v2, ⋯ , vm

}

= {z1
s
, z

2
s
, ⋯ , zm

s
} in the 

upper left part of the matrix in Eq. 1 and unknown values {vm+1, vm+2, ⋯ , vm+L−1}  in 
the lower right corner, wherem is the number of time points (i.e., the size of the sliding 
time window), and L is the embedding dimension. These unknown values are the 
to-be-predicted future information of the target station. By solving the TV-STI equations 
(Eq. 4 with vt = z

t

s
 ), we obtain the L − 1 unknown values {vm+1, vm+2, ⋯ , vm+L−1}, 

and the weight matrices P and Q . The details of solving the TV-STI equations are pro-
vided in SI Appendix, Note S12.

Specifically, for each target variable z
s
(s = 1, 2, ⋯ , n) of sta-

tion s , RSIT evaluates the loss or the RMSE between the predicted/
extended values {vm+1, vm+2, ⋯ , vm+L−1} and the true/observed values 
{

z
m+1
s

, zm+2
s

, ⋯ , zm+L−1
s

}

 with a sliding time window (SI Appendix, Fig. S10). 
The Student t test is applied to estimate the difference between the loss of 
station s at time point t  and its previous errors (SI Appendix, Notes S12 and 
S13). Based on the P-value of significance, we decide whether there is a sig-
nificant difference between the errors from current and from the previous time 
points for station s . If the average P-value is smaller than a significance level 

�

v
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threshold for all stations, we identify an unpredictability signal, and record the 
corresponding time point as tUS.

Generally, it is possible to accurately predict future dynamics by using the STI 
equations when the lithosphere system is in a stable state (47). However, future 
geodetic values (such as GNSS values) cannot be accurately predicted if the system 
approaches a tipping point/critical state. Theoretically, when a dynamical system is 
close to a critical state, the linear terms cannot approximate the dynamics; instead, 
the nonlinear terms dominate the geodynamics based on bifurcation theory (20, 48), 
leading to an increase in the difference between the ground truth and the predicted/
extended values, which is employed as the inconsistency signal. The rise of this incon-
sistency signal, namely, a significant difference between the predicted/extended 
values and the observed values, indicates an imminent tipping point or critical state, 
and thus is the first type of an early-warning signal for a possible earthquake.

Detecting the Fluctuation/Instability Signal Based on STI Equations of a 
Latent Variable vt. In addition to the unpredictability signal, we define another 
signal to detect the tipping point based on transition or bifurcation conditions. 
Based on the CSD principle (19), when the state of a system approaches a local 
bifurcation point (e.g., fold, Hopf, or transcritical bifurcation), its variation or 
fluctuation (e.g., SD) along the center manifold drastically increases due to the 
increased sensitivity to ubiquitous noise. Thus, provided that observations of the 
dynamics on the center manifold are available, a significant increase in the SD 
can be regarded as the fluctuation signal, the appearance of which indicates an 
upcoming abrupt transition of the system state.

We set v as the latent variable to detect the inconsistency signal by using 
Eq. 4. In addition to the weight matrices P and Q , all variables in the matrix of 
Eq. 1 are unknown and must be solved from the LV-STI equations. Since the latent 
variable v represents the dominant dynamics of the geodynamical system due 
to the transformation of the STI equations, v can be approximately viewed as a 
variable on the center manifold when the system approaches the tipping point 
for a generic local bifurcation (20). Then, the SD of the time series of v can be uti-
lized to detect the fluctuation signal in a one-dimensional space. Specifically, the 
extended series v̂1 =

(

v
1, v2, ⋯ , vm+L−1

)�  can be obtained by solving Eq. 4, 

yielding a time series of the SD, i.e., {SD(v̂
1
), SD(v̂

2
), ⋯ , SD(v̂

k−m+1
), ⋯} . 

For each time point t = k , if there is a significant difference between SD(v̂
k−m+1

) 
and its precursors based on the one-sample t test, it is considered the fluctuation 
signal or the second type of an early-warning signal occurring at this time point. 
The details of solving the LV-STI equations are provided in SI Appendix, Note S12.

The Sliding-Window Scheme of the Observed Time Series. In this 
study, for the given real-time high-dimensional time series, RSIT was applied 
based on a sliding-window scheme. A sliding window wk ranges from time 
point t = k to t = k + m − 1 , i.e., the length of each sliding window is m 
(SI Appendix, Fig. S10). For each sliding window wk , RSIT transforms the high-
dimensional spatial information z

t = (zt
1
, zt

2
, ⋯ , zt

n
)�
t=k,k+1,⋯,k+m−1

 (the 
information of n variables) into the one-dimensional temporal information 

v̂
k
= (vk , vk+1, ⋯ , vk+m−1, vk+m, ⋯ , vk+m+L−2)� (the information of a target/

latent variable v ). There are the following two parameters of sliding windows 
(SI Appendix, Fig. S10):

�•   m, the length of the known short-term time series. It is also the size of a 
sliding window wk,
�•  L – 1, the length of to-be-extend future series for each sliding window wk.

Besides, these two parameters together with the embedded neural networks 
including the number of layers, and the number of neurons were adjusted every 
year based on the most recent information (the information of last year in this 
study) with a line search-like strategy due to the time-varying geodynamics, as 
described in detail in SI Appendix, Note S3.

RSIT Algorithm to Alert for Earthquakes. The RSIT algorithm alerts for possible 
earthquakes based on both the fluctuation signal and the unpredictability signal 
via the following procedure.

1. � Determining the earthquake-alerting signal: When a fluctuation/instability signal 
(FS) appears at time point tFS , we set tFS as the reference point. If an unpredict-
ability/inconsistency signal (US) appears at time point tUS during a neighbor-
ing signal/time window SWneigh around tFS , i.e., before or after tFS , then an 

earthquake-alerting (EA) (or the RSIT signal) is provided at tEA = max(tFS, tUS) 
(Fig.  1D). The details of this step are illustrated in SI  Appendix, Fig.  S11. 
Otherwise, RSIT continues to monitor for earthquakes with new data.

2. � Alerting for earthquakes based on warning signals: If an earthquake occurs at 
time point tEO during a time window SWneigh after tEA , then a true earthquake-
alerting signal is provided at tEA.

3. � Excluding postearthquake signals: RSIT discards signals appearing within a time 
window SWpost−earthquake after earthquake-occurring (EO) point tEO when these 
signals represent a series of postearthquakes.

Metrics for Evaluating the Earthquake-alerting performance. A set of uni-
fied metrics is employed for evaluating the earthquake-alerting performance of 
any specific method as follows.

If an earthquake does occur at tEO during a time window SWneigh after tEA , i.e., 
tEO − tEA ≤ SWneigh (SI Appendix, Fig. S11), then the earthquake-alerting signal at 
tEA is a true-positive (TP) alert; otherwise, it is a false-positive (FP) alert. Before an 
earthquake, if there is not any earthquake-alerting signal during a time window 
SWneigh before tEO , then it is a false-negative (FN) result; if there is neither an earth-
quake nor alerting signal during any window, then it is a true-negative (TN) result.

The detailed description of TP, FP, FN, and TN, as well as their calculation for-
mula are provided in SI Appendix, Note S5. As successful early-warning cases 
presented in SI Appendix, Fig. S12, we demonstrate how successful alerts provide 
early-warning signals for imminent earthquakes.

Existing Computational Methods for Performance Comparison. Various 
time-series forecasting methods for earthquakes have been developed. To eval-
uate the earthquake alerting performance of RSIT, we compared it with the fol-
lowing existing ten methods. Among these previous methods, eight (methods 
M1–M8 below) are used specifically in geodetic science, while the other two 
(methods M9–M10 below) are employed more generally.

• � Method 1 (M1) is a real-time outlier detection method based on a window-
based forecasting model (49).

• � Method 2 (M2) is a supervised machine learning algorithm designed for GNSS 
positioning time-series prediction (50).

• � Method 3 (M3) is based on the definition of the randomness of outliers in 
GPS time series (51).

• � Method 4 (M4) is the GPS Interactive Time Series Analysis (GITSA) software 
program developed for the visualization and analysis of GPS time series in 
geodetic and geodynamic studies (52).

• � Method 5 (M5) represents an ANN for predicting earthquakes using real-time 
GNSS data (15).

• � Method 6 (M6) is a deep learning algorithm called WANEH that combines 
wavelets with neural networks and the Hilbert transform to detect anomalies 
in time-series data (53).

• � Method 7 (M7) is a method based on martingale theory to extract anomalies 
from continuous GPS data as earthquake precursors (54).

• � Method 8 (M8) represents a graphical method for detecting outliers in time 
series of continuous daily measurements (55).

• � Method 9 (M9) represents support vector regression (SVR), a supervised 
machine learning algorithm (4).

• � Method 10 (M10) is delayed long short-term memory (dLSTM), an anomaly 
detection method for time-series data (56).

The details of methods M1–M10 are provided in SI Appendix, Note S14. Besides, 
RSIT has been compared with the short-term seismicity-based models, such as 
the Epidemic Type Aftershock Sequence (ETAS) model (40, 41). The details are 
provided in SI Appendix, Note S15 and Fig. S13.

Data, Materials, and Software Availability. The raw GNSS data of prefectures 
of Japan were available from https://www.jisinyosoku.com/ (58). The dataset of 
Sichuan, China was provided by Eastern Deformation Data Branch (https://data.
earthquake.cn/) (59). The raw waveform data of Sichuan, China were accessible from 
https://data.earthquake.cn/ upon request (60). The raw GNSS data of south-central 
Alaska, USA were available from http://geodesy.unr.edu/ (61). The earthquake cat-
alogue data of Japan and China were accessible from http://www.data.jma.go.jp/
svd/eqdb/data/shindo/index.html (62) and http://www.ceic.ac.cn/history (63), 
respectively. The maps of GNSS monitoring stations in Japan were available from  D
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https://sokuseikagis1.gsi.go.jp/ (64). The maps of GNSS monitoring stations in 
Sichuan and south-central Alaska were available from https://data.earthquake.cn/ 
and http://geodesy.unr.edu/Acknowledgements.php (61, 65), respectively. The 
code used in this study is available at https://github.com/YuyanTong/RSIT (66).
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